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Abstract. Although there isa growing historical body of literature relating
to the mathematical modeling of social and historical processes, little effort
has been placed upon modeling the spread of an idea element "meme" in
such a population. In this paper we review some of the literature and we
then consider a simple kinetics approach, drawn from demography, to
model the distribution of a hypothetical "meme" in a population consisting
of three major age groups. KEYWORDS: Meme, idea, age-structure,
compartment, sociobiology, kinetics model.

I. Introduction.

Mathematical approaches to culture transformation, social evolution,
and history have only recently come to the fore. We begin with a brief
overview of the historical literature on the mathematical modeling of
culture changes.

Perhaps the first paper appearing in this area is a paper by Rashevsky
(1939). This paper discusses various mathematical approaches towards a
theory of human relations. Between 1939 and 1968 Rashevsky published

some twenty-one papers on the mathematical modeling of social dynamics * jts own kin due to the genes they in co n. However, otherwise

and history; covering such topics as behavior, aggressiveness,
imitative behavior, a mathematical approach to history, mathematical
biology of social behavior, and the topology of life. An excellent
bibliography and reference set on the work of Rashevsky may be found
in Rashevsky (1968) and (1972). Another interesting text which looks for
the same type of unity between the physical, social, and biological sciences
is Stone (1966). Stone’s work provides a number of examples of how
mathematics may be used to provide a formal description of systems in
such fields as demography, anthropology, sociology, and economics.
During this period of time, 1939-1972, another major attempt was
made to formalize human behavior. Based upon korzybakian premises
Hilgartner (1965) constructs a theory of psychodynamics of human
behaviors. The argumentofthese papers, which is formalizedin Hilgartner
and Randolph (1969 a,b), is that human behavior shows a postulational
structure. That is, any hurnan act may be analyzed as if it were a logical
system, proceeding from some set of assumptions which in tun make use

of some undefined terms, and utilizing some grammar or modus operandi.
Based upon this construction, the role of conclusion or theorem is filled
by the action in question. Unfortunately, this series of papers is never
extended to any real world application.

Perhaps the next major inroad, in attempting to rethink the application
of mathematical techniques to the study of human societies, is the work
of Renfrew and Cooke (1979). This collection of essays contains an
amazing diversity of applications of mathematics to questions of culture
change. Examples, in this reference, extend from prehistoric society to
more recent social structures.

1979 also marked the appearance of E.O. Wilson’s classic
Sociobiotogy (Wilson (1979)) which argued that nearly all behavior is
seen to support and be produced by competitive genetic interest.
According to the sociobiology theory, each animal acts to promote the
propagation of its own genes, competing ruthlessly not only with other
species but with members of its own for scarce but essential resources.
This competition is not necessarily a conscious one, and it has the goal of
leaving the greatest possible number of its own offspring to breed future
generations. The animal will accasionally behave altruistically towards

itis full competition.

In a further attempt to understand the relationship between biology
and the social sciences, Lumsden and Wilson (1981) extend their
developments in sociobiology, using a highly mathematical formulation.
In this work, they begin with the assumption that in order to understand
the relationship between genetics and cultural evolution, one must examine
the process of individual mental and behavioral development. The
interested reader is encouraged to examine this text, as it will provide a
useful and interesting insight into the mathematization of the evolution of
culture. For altemate views on cultural evolution see Cavalli-Sforza and
Feldman (1981) and Boorman and Levitt(1980).

Finally, many of the aforementioned references initiated further
research in the field. A most recent example is Eshel and Cavalli-Sforza
(1982) which discusses extensions on the conoept of evolutionarily stable
strategies and the evolution of cooperativeness.
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In closing this brief summary, it should be pointed out that each of dN
the cited references has extensive literature citations. Many of these 7 = (1S + iR +1:P) (2.16)

citations are worth reading. In the upcoming section we begin discussion
of a simple kinetics model for the propagation of a hypothetical “idea" or
"meme" in a structured population.

IL. The Kinetics Model.

Webegin by considering a three compartment model for a population
containing pre-replicative individuals, P; replicative individuals, R ; and
post-replicative individuals, S ; as illustrated in Fig. 1. We assign average
specific mortalities ps, i and p, to each compartment in units of 1/year,
and average transition rate constants k, and & for moving from one group
into the next (aging) in units of 1/year. From Fig. 1

R[=»|S
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Figure 1. A simple three compartment model containing
prereplicative, replicative, and postreplicative compartments.
Each compartment has an average specific mortality ps, ke, e,
and kp and k; are the average rate constants for moving from one

(aging) group into the next.

we deduce the following kinetics equation system

dpP
7 ~bR - (ke +pp)P

R bR +kP (kg + )R (2.1a)

dt
ds
7 = kR —psS
N=P+R+S

From our equation for N we obtain the additional equation

The problem with this model is the fact that as R feeds P, it depletes R.
Hence, as ¢ —» w this implies everything in the system tends to zero. To
rectify this problem, we need to realize that the reproductive process of R
adds to P but does not deplete R , particularly in human populations. This
yields the new system of equations

Z bRy + )P

B kPl + IR (22)
ds

2 = kR - psS

dR

<~ BR=(1sS + 1R +pP)

System (2.2) corresponds to situation of the type illustrated in Fig. 2.
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Figure 2. A simple three compartment model which accounts
for the reproductive process R.

Let us now consider how this simplest class of model might be used
to examine the transmission of a quantitative idea, meme, or trait. We
will indicate the traited variables by the subscript T. We make it clear
that we do not mean a genetic trait, when we discuss traits.
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Assume we have a collection of individuals which has size N(t). Let
T(1) be the total number of traited individuals (individuals with the
"meme")in the population at time¢. Then F(t) = N(1) - T(¢) individuals
do not have the trait. If we assume a compartmentalized population of the
form illustrated in Fig. 3 we may then argue as follows.

Figure3. The uncoupled trait -no trait model for the transmission
of a "culturgen” or meme.

We know that individuals in Ry may give rise to Py and P individuals.

Hence, let fr be the fraction of Py’s produced by R;’s. Then (1 - f) is the
untraited and we obtain

JrbrRr = number of traited new births arising from traited
individuals

29
(1 - fr)bsRr= number of nontraited new births arising from
traited individuals

Further, we will assume that R’s may give rise to Py’s. Thus, we also have

JbR = number of untraited new birth arising from untraited
individuals

(249)
(1 - HbR = number of traited new births arising from
untraited individuals

This is illustrated in Fig. 4.

21

Figure 4. An illustration of the coupled trait -no trait kinetics
model for the transmission of a "culturgen” or meme.

The differential equations arising from Fig. 4 are given by the
following system of equations

Traited:

dP,
= =R+ (L=NBR = (ky, + s )Py
dR,

% - ka,Rr - l‘s,sr

Untraited:

O = FOR +(1~f )by —(kp + )P
R kP - e+ uR 26)

ds
7 =R -psS

21
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Further, day 7
ar_db; dRe ds; @B @1
a~atata
= frbrRe+(1=f)BR ~ (tp Py + tn Ry + 1. S7) @7 :';etting det | B~ Al] = 0 we obtain the characteristic equation P(\). That

B R + (1 £YbRr - (4P + 1aR +15)

Notice that for f = f = 1 this system decouples completely as one would
expect. Letting

X =(P;,R;,S;,T,P,R,S,F) (2.8a)
and

"(kr,* l'r,.) fibr 0o o 0 (a-nsd o o

kp, —(I:,r-c- u,r) 0 o 0 0 0 o

0 ks, -ns, O 0 0 0 0

A=| M fbr-pe, -ps, 0 0 a- o o

0 A-fbr 0 0 —(up+ky) jid 0 0

()} 0 () k. ~(ng+ky) O O

0 ()} 0 0 (1} ky -ps 0

0 (a-fby 0 0 -p Po-py  -ps 0

equations (2.5) - (2.7) reduce to the simple matrix differential equation
system

X _ A3 (29)

As the variable F and T are linear combinations of the other va_l;iabls
we may eliminate them to yield a reduced system of ode’s where Y is the
reduced vector

Y = (P;.R;.S;.P,R,SY (2.10a)
and B is the reduced matrix
(~(kp, +1tp) frbr 0 Y 1-Hb 0
ks, ~(kp,+p5) O 0 0 0
B-| ° ke, K, 0 0 0
0 (1-fbr 0 —(up+ke) j 0
0 0 0 ke (ktp) O
[ o 0 0 0 ko-w
and

1S,

det | B~M |= 0 = (s + 1) (s, +Adet | B-AI| = P(A) = 0

where

(2.12a)

ke, +1e)  Srbr Y (1-nb
B Ic,.r - (k,,r + u,r) 0 0

0 (1-fbr  —(kp+py) )i
0 0 ke —(atpa)

After some tedious algebra, one can show that

det | B~ M| = [o,(Na(d) - (1-)(1 - £)Nbby)
Where

(2.13a)

oy ke~ + w:); A (r + or) + )

o) = (fOkp = [(kn + 1) ";n [(ke +pp) +N)

Hence, the eigenvalues are given by A = ~jis; A = —is5, and the four roots
of (2.13a).

For the case where either fr =1, o f=1, or both f;- = f = 1; equation
(2.13a) becomes relatively straight forward to solve. See Appendix I for
a discusssion of the uncoupled case, and see Appendix Il for the case f=1,
Jrarbitrary. If we let B = (kg + pg), Bry = (kry + Mrr), P = (kp +1p), and,

Bar = (kpy + Hpy)We can show that (2.13a) is a quartic equation

(2.13b)

A+a N +ar +ah+a,=0 (2.14a)
where

ay =P +Pry+Pp +Bp,

Gy = B Bpp +BrBp + (Br +Bp) (Bay + Bpp) — (frbrkey + fkp) (2.14b)

ay = (Ba +Bp) [Ba,Br — frdrke] + By +Bpy) (BxB- - f0k;)
ay=(fr +f = 1)bbrkpkp. —BrBrfrbrkp, — PaBrfOks + BaBeBa By
Ungar (1982 ab) has discussed a fast, efficient method for the

determination of the roots of (2.14a). His method will be useful in the
following discussion.
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From (2.12a) we have that two of the six eigenvalues of (2.11) are 1 2.15¢
real and negative. Hence as ¢ — o the components of the total solution a=3Vao+a b+t (2.15)

to (2.11) cormresponding to these eigenvalues (the eigenvectors
corresponding to the eigenvalues A w —j1s and A = —ps,) will tend to zero.

Hence, the asymptotic behavior of (2.11) is determined by the roots of the
quartic (2.14). Clearly, if all the roots are real and negative we obtain an
uninteresting solution; namely Y = O is stable and all population groups
die out. Should any of the real eigenvalues be positive we obtain
exponential growth which is equally uninteresting. What we would like
to see is persistence of "trait" or "nontrait" components such that
unbounded growth does not occur. One way to force this type of dynamics
is to require that at least one pair of complex eigenvalue exist, that they
be pure complex, and that all four remaining eigenvalue be negative and
real. Let us consider how this could occur. From this point on, we will
make extensive use of results detailed in Ungar (1982b).

Let us first cite some preliminaries. Let Ay, 4,2, A5 be the four roots

of an arbitrary quartic

A+a N +a) +a)h+a,=0
then Ungar (1982a,b) has shown that

(2.15a)

Ao=a+P+y+d
M=a+p-y-5
M=a-pB+y-5
h=a-p-1+d

(2.15b)

where a,B,v, 0 are defined as follows. Let

P=a}-4a,a,+8a,

Q =123,+a}-3a,a,

R =27aa,-9a,a,a, +2a; - 12a,a,+ 21a’
Further, let

(2.15¢)

2 8
Q=a, ‘3“2

4 3/R+VR*-4Q
b3V 2

(2.15d)

d=3VaTaPor s
=2 o 1Yo

Ungar (1982b) has shown that if R*-4Q" > 0 that two and only two

of the roots of (2.15a) are real. And, in fact a and § are pure real, and
either y and 8 or y -8 is pure complex and the other is pure real. Hence,
ify+0 is real then we must require

a+f+y+8<0
a+f-y-8<0
a-pf=0

(2.16a)

This insures us that, for this choice, our real eigenvalue will be negative
and our complex eigenvalues will be pure complex. Hence, our four
eigenvalues are

Ao=2f+(y+d)
M =28-(y+3)
A=y-0

A =—y-9)

(2-16b)

For the case y - b real, we require

a+p=0
a-f+y-6<0
a-f-y+5<0

(2.16¢c)

and the four eigenvalues become

ho=y+d
My=—{y+3)
M=-28+(y-3)
Ay=-28-(y-9)

(2.16d)

In the case R? - 40" = 0, Unger (1982b) has shown that two roots of
(2.15a) are real and the remaining two roots of (2.15a) are real if f = 0 for
all three possible cube roots in (2.17) where T is given by

T 3a,’-sa,+sne[\’/m] 217

If we require T < 0, and if we define

T, =3} - 80, -5y 218

2
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then Ungar (1982b) points out that vy, are real for T,=0. Thus, for

T,<0  o,p are real and v, are pure complex (iff two values of T are
negative). In this case we require
a+pf=0
a-B+y-8<0 (2.19)
a-p-y+8<0

The case for R? - 4Q° < 0 may be analyzed in the same manner but proves
to be exceedingly tedious. For this case, one can show Ungar (1982b) that
at most two of the three numbers 8,7,  may be pure complex and unequal
and a is real. However, from Theorem 6.1 of Ungar (1982b) we may
guarantee that all the roots are complex if fr < 0 for at least one of the three
possible cube roots of (2.17).

I1I. Closing Comments.

Thisconcludes ourdiscussion of the kinetics model for the distribution
of a hypothetical "meme" in a population with three distinct age groups.
It should be clear that this model may be extended to a multicompartment
model containing more that just the three compoartments discussed in this
model. A sample of a model is illustrated in Fig. 5.

[ I
N/am ; e
p_n/f’m..._}gf....._’ R—#s—T St

lnbibe be b

Figure S. An illustration of a multicompartment model for the
traited component.

In the next paper in this series we consider the problem from the point
of view of a continuous age structure.
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Appendix 1.

In this appendix we consider the case f = fr = 1. From (2.12a) and (2.13a)
we obtain

P() = ar(Na(d) (A +us) (A +ps;)
Equation (A1) reduces to solving the two independent equations

Ar.)

A+ Bz +Bp)A+ (Befp ~kpb) = 0

Ar2)
A+ (pn,- + Bp,) + (pnerr - kPrb) =0
One can show that the roots of (Al.2) are given by
. o (BatBr) VB y B+ b
2
AL3)

A - (Bar +Brr) =V (Bar - ﬁpr)l +dkp,b

2

AsPBp, Bpr Br, Brp ke, kppr8nd b are all positive, all six eigenvalues are real

or have negative real parts. Hence, at best, only damped oscillation may
occur.

Appendix I

In this appendix we consider f = 1 and f; arbitrary. Here, (2.12a) reduces
to

[frbrker = (Bar +Aay) (Bop + M) [Bkp - (B +A) (Bp + M) =0 (AIL)
For the untraited individuals the eigenvalues must satisfy

N+ (g +Bo)A + (BaBp — bkp) =0 (All.2)
which yields eigenvalues

A= (B +PBa) = V(Be + ga)z —4(BxBp - kpb) (AIL3)

For the traited component of (All.1), the eigenvalues must satisfy

N+ (Bay +Be)A+ (BryBey — frbrke,) =0 (All.4)
or

e ﬁar+l3?r=\/(ﬁar+ﬁrg'+4(ﬁazﬂrr = frke;br) AILS)
We may write \/(Bay +Ber) — HPBaBer —frkebr)  as

VBar +28arBer + Ber — 4ParPBpr + 4frkerbr

=/ (Br,=Bry)* +4frkprbr 20 (AlL6)

Thus. again we have no complex eigenvalues, and hence, no oscillations.



