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AbstractAlthough thereisa growing historical bodyofliterature relating
tothemathematical modelingofsocialandhistorical processes, littleeffort
has been placed upon modeling the spread of an idea element "meme" in
sucha population. In this paperwe reviewsomeof the literatureand we
then consider a simple kinetics approach, drawn from demography, to
model thedistributionofahypothetical "meme" ina populationconsisting
of three major age groups. KEYWORDS: Meme, idea, age-structure,
compartment,sociobiology, kinetics model.

I. Introduction.

Mathematicalapproaches toculture transformation, socialevolution,
andhistory have onlyrecently come to the fore. Webegin with a brief
overview of the historical literature on the mathematical modeling of
culture changes.

Perhaps thefirst paperappearing inthisarea isa paper byRashevsky
(1939). Thispaper discusses various mathematical approaches towards a
theory ofhuman relations. Between 1939and 1968 Rashevsky published
sometwenty-one papersonthemathematical modeling ofsocial dynamics
and history; covering such topics as mass behavior, aggressiveness,
imitative behavior, a mathematical approach to history, mathematical
biology of social behavior, and the topology of life. An excellent
bibliography and reference set on thework of Rashevsky may be found
inRashevsky (1968) and (1972). Another interesting text which looks for
thesametype ofunity between thephysical, social, and biological sciences
is Stone (1966). Stone's work provides a number ofexamples of how
mathematics may be used to provide a formal description ofsystems in
such fields as demography, anthropology, sociology, andeconomics.

During this period of time, 1939-1972, another major attempt was
made to formalize human behavior. Based upon korzybakian premises
Hilgartner (1965) constructs a theory of psychodynamics of human
behaviors. The argumentofthese papers, which isformalized inHilgartner
and Randolph (1969a,b), is that human behavior showsa postulational
structure. That is,anyhuman actmay beanalyzed as if it were a logical
system, proceeding fromsomesetof assumptions whichin turnmakeuse

ofsome undefinedterms,andutilizingsome grammarormodusoperandi.
Based upon this construction, the role of conclusion or theorem is filled
by die action in question. Unfortunately, this series of papers is never
extendedto any real world application.

Perhaps the next majorinroad, inattempting to rethink theapplication
of mathematical techniquesto the study of humansocieties, is the work
of Renfrew and Cooke (1979). This collection of essays contains an
amazingdiversityof applicationsof mathematics to questionsof culture
change. Examples, in this reference, extend from prehistoric society to
more recent social structures.

1979 also marked the appearance of EO. Wilson's classic
Sociobiology(Wilson (1979)) which argued that nearly all behavior is
seen to support and be produced by competitive genetic interest.
Accordingto the sociobiology theory, each animal acts to promote the
propagation of its own genes,competing ruthlessly not only with other
species but with members of its own for scarce but essential resources.
Thiscompetition is notnecessarily a consciousone, and it has thegoalof
leavingthegreatestpossiblenumberof its own offspring to breedfuture
generations. The animal will occasionally behavealtruistically towards
its ownkindue to thegenestheycarryin common. However, otherwise
it is full competition.

In a further attempt to understand the relationship between biology
and the social sciences, Lumsden and Wilson (1961) extend their
developments in sociobiology, usinga highly mathematical formulation.
In this work, they beginwith the assumption that in order to understand
therelationshipbetweengeneticsandculturalevolution,onemustexamine
the process of individual mental and behavioral development. The
interested reader is encouraged to examine this text,as it will provide a
useful andinteresting insight intothematbematization oftheevolution of
culture. For alternate views on cultural evolution see Cavalli-Sforza and

Feldman(1981)and Boorman and Levitt(1980).
Finally, many of the aforementioned references initiated further

researchin the field. A most recentexample is Esheland Cavalli-Sforza
(1962) which discusses extensionson theconcept ofevolutionarily stable
strategiesand theevolution of cooperativeness.
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In closing this briefsummary, it should be pointed out thateachof
the cited references has extensive literature citations. Many of these
citationsareworth reading. Intheupcoming section webegin discussion
ofa simple kinetics model forthepropagation ofa hypothetical "idea" or
"meme" in a structuredpopulation.

II. The Kinetics Model

Webegin byconsidering a three compartment model forapopulation
containingpre-replicative individuals, P; replicative individuals, R; and
post-replicative individuals, S; asillustrated inFig. 1. Weassign average
specific mortalities |%,m> and p*toeachcompartment in unitsof 1/year,
andaveragetransition rateconstantsA> and&* formovingfromone group
into the next (aging)in unitsof 1/year. From Fig. 1
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Figure 1. A simple three compartment model containing
prereplicative, replicative, and postreplicative compartments.
Eachcompartmenthas an averagespecificmortality(%, u*>, p?,
and kP and A^ are the average rate constants for moving from one
(aging) group into the next.

we deduce the following kinetics equation system

dN-£- -(PsS +PaK +MpP) (2-1*)

The problem with this model is the fact thatas R feedsP, it depletes R.
Hence,as t -* oo this implieseverythingin the system tends to zero. To
rectify thisproblem, we needtorealize thatthereproductive process of R
addsto PbutdoesnotdepleteR, particularly in human populations. This
yieldsthenewsystem of equations

-^--M-ftp+UjOP

dR

dt

dS

dR-jf-bR-iHsS +VbR+toP)

M*-(** +M*)K (2.2)

System (2.2) correspondsto situationof the type illustratedin Fig. 2.
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N-P+R+S

Figure!. A simple three compartment modelwhichaccounts
(2.1a) for the reproductive process R.

Fromour equationfor N we obtain the additional equation

20

Let us nowconsiderhow thissimplestclass of modelmightbe used
to examine the transmissionof a quantitative idea, meme, or trait. We
will indicate the traited variables by the subscript T. We make it clear
that we do not mean a genetic trait, when we discuss traits.
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Assume we have a collection of individuals which has size N(t). Let
T(t) be the total number of traited individuals (individuals with the
"meme") in the populationat time t. Then F(t) - N(t) - T(t) individuals
do not have the trait. If we assume acompartmentalizedpopulation of the
form illustrated in Fig.3 we may then argueas follows.

pT!£ Rri s^

kp k rs
-• P +> R + S ^

h %

Figured Theuncoupled trait -notrait modelforthetransmission
of a "culturgen" or meme.

We know thatindividuals in/?rmay giverisetoPr andPindividuals.

Hence, let/r bethe fraction ofPT's produced byRT's. Then (1 -fT) is the
untraited and we obtain

/tOtRt =number of traited newbirths arising from traited
individuals

(1 -fT)bjRT= numberofnontraited newbirths arising from
traited individuals

(2.4)

Further, wewillassume that R'smaygiverise toPr's. Thus, wealsohave

fbR=number of untraited newbirth arising from untraited
individuals

(1 - f)bR = number of traited new births arising from
untraited individuals

This is illustrated in Fig. 4.

21

(2.4)
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Figure 4. An illustrationof the coupled trait -no trait kinetics

model for the transmission of a "culturgen" or meme.

The differential equations arising from Fig. 4 are given by the

following system of equations

Traited:

dPT

dRT ,

dSr

Untraited:

j./b«+(i-/M-(*f+i«p)P

fy-(*.+i«,)R
dS .

(25)

(2.6)
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Further,

dT dPT dRT dSr

dt' dt dt dt

•frbjRrHl -f)bR-(PpPt+V^Rt+PsSt)

dF
-jJ-fbR +(1 -frVfjRT-iv^P +M +Ms«)

(2.7)

Noticethat for/r =/= 1 this systemdecouples completely as one would
expect. Letting

dt"BY (2.11)

setting det | B- XI| - 0 weobtain the characteristic equation P(k). That
is,

derlB-XII-O-^+XJd^+XVfcrll-XII-PM-O (2.12a)
where

*iy "(*i.r +M^) 0 0
0 (l-fT)bT -(kF + H>) fb

\ o o *, -fo+M*);

X - (PT,RT,ST,T,P,R,S,F) (2.8a) B-

and

A-

NVm,,) /A 0 0 0 (l-f)b 0 0\

V -(*j«r +Mp,) 0 0 0 0 0 0

0 *«r -Ms, 0 0 0 0 0

-^r /i*r-m,. -Ms, 0 0 (l-/> 0 0

0 0-/rX>r 0 0 -(Mr**,) fl> 0 0

0 0 0 0 *, -(M*+*„) 0 0

0 0 0 0 0 *, -Ms 0

1 ° (l-/r»r 0 0 -\h fl>-\** -Ms oj

equations(2.5) - (2.7) reduce to the simple matrix differential equation
system

dt
(2.9)

As the variable F and T are linear combinations of the other variables

we may eliminate them to yielda reduced system of ode's where Y is the
reduced vector

Y-(PTiRT,SrtP,RtS)T
and B is the reduced matrix

f-V^ +HFfc)
*>,

0

0

0

0

-(*pr +M*y) 0

B

and
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(Wr)*r
0

0

0

0

0

0

0

0

0

(2.10a)

(\-f)b 0 *

0 0

0

fb

(-**+m)
kD

0

0

0

After some tedious algebra, one can show that

det\B-)I\-[a^W*.)-(l-Ml-fT)H>bA
Where

Oj(k)
(fi*i*/y - K**r + M*r) +*3 [(*/Y +IVr)+ M] )

*i»r

o(X)-
(/&*i>-[(*A +M*)+>n(*/> +H*) +*3)

(2.13a)

(2.136)

Hence,the eigenvalues are givenby X. - -u«; X- -p$r and the four roots

of (2.13a).
For the case where either fT-1, or fi=l, or both fT-/-1; equation

(2.13a)becomesrelativelystraightforward to solve. See Appendix I for
a discusssion of theuncoupled case,andsee Appendix II for thecasef=\,
frarbitrary. Ifwe let BR - (kR+u*), B*r - (kRT+|i«r), fa - (kP + p>), and,

Pit - for+H>r)we an showmat(2.13a) is a quarticequation

X+a,XJ+ajX,2+a,X+a4 - 0
where

(2.14a)

fli-P/» +PKr +Pi>+Pi»r

^Mfii +PjOEWW^iJ +0*r+Pi^)IPiiiV-MJ

«4-(fr+/-l)*Mi^Y-P/.Pp/r*7*iY-PiirPi^'+Pi«PAAr

Ungar (1982 a;b) has discussed a fast, efficient method for the
determination of the roots of (2.14a). His method will be useful in the
followingdiscussion.
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From(2.12a) we have that two of the six eigenvalues of (2.11) are
real and negative. Hence as t -» «the componentsof the total solution
to (2.11) corresponding to these eigenvalues (the eigenvectors
corresponding to theeigenvalues X- -u* andX- -u«r) willtend to zero.

Hence, theasymptoticbehaviorof (2.11)isdetermined by therootsof the
quartic (2.14). Clearly, if all therootsare real and negative weobtain an
uninteresting solution; namely Y- O is stableandall population groups
die out. Should any of the real eigenvalues be positive we obtain
exponential growthwhich is equallyuninteresting. Whatwe would like
to see is persistence of "trait" or "nontrait" components such that
unbounded growthdoesnotoccur. Onewaytoforcethistypeof dynamics
is to require thatat leastone pairof complex eigenvalue exist, thatthey
be purecomplex, and thatall four remaining eigenvalue be negative and
real. Letus consider howthis couldoccur. Fromthis point on, we will
makeextensiveuse of results detailed in Ungar(1982b).

Let us first cite some preliminaries. Let Xa, X,,X* X,be the four roots

of an arbitraryquartic

a--Voo+«jPo+92Yo (2.15e)

ft-^Voo+ftPo+giYo

Ungar (1982b) has shown that ifR2-4Q* >0 that two and only two
of the roots of (2.15a) are real. And, in fact a and p are pure real, and
either y and 6 or y- 6 is pure complex and the other is pure real. Hence,
if y+6 is real then we must require

a+p+Y+6<0

a+p-Y-6<0

a-p-0
(2.16o)

This insures us that, for this choice, our real eigenvalue will be negative
and our complex eigenvalues will be pure complex. Hence, our four
eigenvalues are

X4+a,X3+OaX2+ajX+a4 - 0
then Ungar (1982a,b) has shown that

Xo-a+p+y+6

X,-a+p-Y-6

Xj-a-p+Y-6

X,-a-p-y+6

wherea,p,Y,6 are defined as follows. Let

P-af-4a,a2+8a3

C-12a4+aJ-3a1a3

R- 27a,2a4 - 9alafiJ+2al~12ap4+27aJ
Further, let

(2.15a) Xo-2p+(Y+6)
X,-2P-(y+6)

X.-Y-6

h—<Y-6)

(2.156) Forthe case y-b real, werequire

(2.166)

2 8
ao-a,--02

^"sv 2—

v 4*/R-1R*-4&
Yo"3V 2

Then
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-fli -l+iy/3
fc--

a 1 /—a -l-iv5P--Vao+Po+Yo q2" j—

(2.15c)

(2.15a-)

a+p-0

a-p+Y-6<0

a-p-Y+6<0

and the four eigenvalues become

*•—<Y+a)

*,—2P+(y-6)

X,—2P-(y-6)

(2.16c)

(2.16d)

In thecase R2 - 4Q* - 0, Unger (1982b) hasshown that two roots of
(2.15a)are realand theremaining tworootsof (2.15a)arerealif/r 2 0 for
all three possiblecube roots in (2.17) where T is givenby

7-3ar-8o2+8Re yjt+W-4Q*

If we requireT < 0, and if we define

To-Saf-Sflj-li^

(2.17)

(2.18)
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then Ungar (1982b) points out that y,8 are real for r0aO. Thus, for
T0 <0 ct, p arereal andy,6 arepure complex (iff twovalues of T are
negative). In this case we require

a + p-0

a-p+Y-6<0

a-p-Y+6<0

(2.19)

The case for/?2 - 4fi3 <0may be analyzed in the same manner but proves
tobeexceedingly tedious. Forthiscase,onecanshowUngar (1982b) that
atmost twoofthethree numbersp,y,6 may bepure complex and unequal
anda is real. However, from Theorem 6.1 of Ungar (1982b) we may
guaranteethatall the rootsare complex iffT< 0 for at leastoneof the three
possible cube rootsof (2.17).

III. Closing Comments.

Thisconcludesourdiscussion ofthe ki neticsmodel for the distribution

of a hypothetical "meme" in a population with three distinct agegroups.
Itshould beclearthatthismodel maybeextended toa multicompartment
model containing more thatjust thethreecompoartments discussed inthis
model. A sampleof a model is illustrated in Fig.5.

Figure 5. An illustration of a multicompartment modelfor the
traited component.

In thenextpaperin thisseriesweconsidertheproblem from thepoint
of view of a continuous age structure.
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Appendix I.

In thisappendixwe consider thecase/ - fT-1. From (2.12a)and (2.13a)
we obtain
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P(X)-o,<XWWX+U5)(X+M5r) (A/1)
Equation (AI.l) reducesto solving the twoindependent equations

^MP*r+M+(Mi'^-V,)-0
One can show that the roots of (AI.2) are given by

(P,+P,)±V(MpV)*+4M>
K —

(P«r +M ±^(faT-M'+4kPTb
tf~

(A/.2)

(AI3)

As pP, Bjy, Pr, fajikp, kPr,&nd b are all positive,all six eigenvalues are real

or have negative real parts. Hence,at best, only damped oscillationmay
occur.

Appendix D

In this appendixwe consider/ -1 and/r arbitrary. Here, (2.12a) reduces
to

Vib7*PT-(P*T+W(Pi>r+X)] [**p-(P*+WpV+>0j -0 (AII.l)
For the untraited individuals the eigenvalues must satisfy

X.2 +(P* +P,)X+(P*Bi»-&*i,)-0

which yieldseigenvalues

. (Pp+P«)±V(Pi>+P*)'-4(P,P,.-*fi>)

(AII.2)

(AII3)

For the traitedcomponentof (AII.l), the eigenvalues mustsatisfy

tf +OW+^+<M*->WW-0 (AIIA)
or

p,I.+pPr±V(Pi,r+Pi»r)'+4<Pi«rPiY-Mi^r)
K—• (AILS)

WemaywriteV(Pi.r+Ppr)'-4(Pi»rPiY-/i*^r) as

VP4+2p,I#iY+pi4-46^iY+4/7*p1Ar

-V<fc,-W+4**A*0 (AII.6)

Thus, again we haveno complexeigenvalues, andhence,no oscillations.
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